Indian Statistical Institute, Bangalore

B. Math. Second Year

First Semester - Analysis III

Mid-Semester Exam Duration: 3 hours Max Marks 100 Date: Sept 07, 2016

Note: This paper carries a total of 120 marks. Answer as much as you can. The maximum you can score is 100.

- 1. Let $m \ge 1$ and K a compact subset of $\mathbb{R}^m \times \{0\}$. Then show that there is a function $f : \mathbb{R}^{m+1} \to \mathbb{R}$ such that (i)f is continuous in each of the m+1variables separately, and (ii) f is continuous at $z \in \mathbb{R}^{m+1}$ iff $z \notin K$. [20]
- 2. (a) State and prove the chain rule for differentiable functions on domains in euclidean space.
 - (b) Let $\lambda > 0$, and define $f : \mathbb{R}^m \to \mathbb{R}$ by $f(x) = ||x||^{\lambda}$. For what values of λ is f continuously differentiable? Justify your answer. [10 + 10 = 20]
- 3. (a) Let $x, y, z \in \mathbb{R}^m$ and a < b < c be real numbers. Then show that $\frac{z-x}{c-a}$ belongs to the closed line segment joining $\frac{y-x}{b-a}$ and $\frac{z-y}{c-b}$.
 - (b) Using part (a), show that if $a, b \in \mathbb{R}^m$, f is a differentiable function on a neighborhood of [a, b] into \mathbb{R}^n , then there is an $x \in [a, b]$ such that $||f(b) f(a)|| \le ||b a|| \cdot ||f'(x)||$.
 - (c) Give an example to show that equality may not be possible in part (b). . [10 + 15 + 5 = 30]
- 4. Let $f : \mathbb{R}^m \to \mathbb{R}^m$ be continuously differentiable. Suppose f'(x) is invertible for all $x \in \mathbb{R}^m$. Then show that f is an open map, that is, f(U) is open for all open subsets U of \mathbb{R}^m . [10]
- 5. Let $GL(n, \mathbb{R})$ denotes the group of all invertible linear operators on \mathbb{R}^n to \mathbb{R}^n . Show that the function $f : GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ defined by $f(A) = A^{-1}$ is continuous. [20]
- 6. Given an example of a function $f : \mathbb{R}^n \to \mathbb{R}$ such that all the partial derivatives of f exist everywhere but f is not differentiable. Justify your answer. [20]